Sharp Nonasymptotic Bounds on the Norm of Random Matrices with Independent Entries by Afonso

نویسنده

  • S. BANDEIRA
چکیده

This bound is optimal in the sense that a matching lower bound holds under mild assumptions, and the constants are sufficiently sharp that we can often capture the precise edge of the spectrum. Analogous results are obtained for rectangular matrices and for more general subgaussian or heavy-tailed distributions of the entries, and we derive tail bounds in addition to bounds on the expected norm. The proofs are based on a combination of the moment method and geometric functional analysis techniques. As an application, we show that our bounds immediately yield the correct phase transition behavior of the spectral edge of random band matrices and of sparse Wigner matrices. We also recover a result of Seginer on the norm of Rademacher matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Norm of Products of Random and Deterministic Matrices

We study the spectral norm of matrices W that can be factored as W = BA, where A is a random matrix with independent mean zero entries and B is a fixed matrix. Under the (4 + ε)-th moment assumption on the entries of A, we show that the spectral norm of such an m×n matrix W is bounded by √ m + √ n, which is sharp. In other words, in regard to the spectral norm, products of random and determinis...

متن کامل

On the Spectral Norm of Gaussian Random Matrices

Let X be a d×d symmetric random matrix with independent but non-identically distributed Gaussian entries. It has been conjectured by Lata la that the spectral norm of X is always of the same order as the largest Euclidean norm of its rows. A positive resolution of this conjecture would provide a sharp understanding of the probabilistic mechanisms that control the spectral norm of inhomogeneous ...

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

ESTIMATION OF HIGH - DIMENSIONAL LOW - RANK MATRICES 1 By Angelika Rohde and Alexandre

Suppose that we observe entries or, more generally, linear combinations of entries of an unknown m×T -matrix A corrupted by noise. We are particularly interested in the high-dimensional setting where the numbermT of unknown entries can be much larger than the sample size N . Motivated by several applications, we consider estimation of matrix A under the assumption that it has small rank. This c...

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015